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THE COMBINED PROBLEM OF THERMOELASTIC CONTACT BETWEEN TWO PLATES THROUGH 
A HEAT CONDUCTING LAYER* 

v.v. ZOZULYA 

The problem of the contact between two plates under the action of a 
force and temperature field is formulated. It is assumed that when the 
plates are deformed, the conditions of heat exchange between them also 
change. The equations of motion and heat conduction of the 
thermoelastic plates, as well as the ec~/ations of heat conduction of the 
heat conducting layer are derived by expanding the three-dimensional 
equations in series in Legendre polynomials. The equations of the n-th 
approximation are constructed and the equations of the first 
approximation are studied in detail. 

I. For'f~,Gt~,on of t~ pPob~e~l. We consider two plates (1 and 2) of arbitrary contour 
and constant thickness A I and h~, respectively, situated, in an initial undeformed state, a 
distance h 0 apart. We shall assume that h 0 is commensurable with the flexures of the plates, 
and we will assume the flexures to be small. A heat-conducting medium is enclosed between 
the plates. The medium does not resist their deformation, and heat exchange within it is due 
to its thermal conductivity. Let ~y(~ = I, 2) be the regions occupied by the median surfaces 
of the plates, aQy their boundaries, Qy+ and Q~ the upper and lower surfaces of the 
plates, and Fy the side surfaces. 

The thermodynamic state of the system, including the plates and heat conducting layer, is 
defined by the following parameters: ~i/(v)(x~,t), e,/(y)(x~,t), ui(v)(x~,t) (~,],k = 1,2,3; ~ : 1,2) 

are the components of the stress and deformation tensors and displacement vectors of the 
plates, and Yy(x~, ~, Xv(X~, t), T. (zk, t), X. (z~, t) are the temperature and specific strength of 
the internal heat sources in the plates and the layer, respectively. The boundary conditions 
written in terms of the stresses and conditions of heat exchange with external medium and 
with the heat conducting layer are specified at the end surfaces Qy + and ~v- • The boundary 
conditions at the sides consist of mechanical and thermal conditions and depend on the way 
they are clamped and on the heat exchange conditions. The distribution of the displacements, 
velocities and temperature in the plates and the layer at the initial instant t = 0, are 
known. 

The external forces and temperature fields acting on the plates cause them to bend 
towards each other, and the plates may come into contact. This is accompanied by the appear- 
ance of a previously unknown zone of dense contact Q,(t) = ~i- N Qz + changing with time, 
within which the contact forces of interaction qi(za, t) (t = 1,2, 3; ~ = 1,2) appear and contact 
heat transfer occurs. The problem therefore consists of determining the stress-deformation 
state and the temperature fields within the plates, the region of dense (complete) contact 
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Q,(t), and the contact interaction forces qi(x=.t), 

8. Eq1~zt~yasdesol,~b~Rg the t h e ~  state o~ t~e system. When considering the 
thermoelastic state of the plates, we start from the equations of thermoelasticity /i/ 

~hu,(v) + (~ + ~) ~ d iv  u(v ) _ o'u~(v ~ - -  ,o~ - -  0 ( r  v - -  rocv) ) 
= p ~ ~ to^ ~- 2~) a7 oz, (2. t )  

X? = 1 8T v n u ( 3 ~ + 2 ~ ) a T T ° ( y  ) 
AT v ~ ot X T ~ ~ d iv  u{v ) (2 .2)  

+ 

d iv  u(v ) Oux(v) ~ °u~(v) Ous(v) 
- o~ ---Y~-~, +~, / 

where A is the three-dimensional Laplace operator, ~ and ~ are the Lame coefficients, p is 
the density of the plate material, ~r, ~T and ~ are the coefficients of linear thermal 
expansion, thermal conductivity and thermal diffusivity, and T0(v) is the initial temperature 

distribution corresponding to the undeformed state of the plates. We assume that the 
mechanical and thermal properties of the plates are the same. 

All thermodynamic parameters within this section will depend on four variables x =(~,~, 
zs),t. We shall omit these variables in order to shorten the notation, and we shall continue 
to use these abbreviations in what follows. 

The temperature distribution within the layer is described by the equations of heat 
conduction 

A T , + x , / X ,  = a,- lOT,/Ot (2.3) 

where ~. and a. are the thermal conductivity and thermal diffusivity, respectively. 
We will write the mechanical boundary conditions at the face surfaces of the plates in 

the form 

~{~) = ~+,  V (x) ~ ~,+, ~,~(,) = o,f, V (x) ~ e,- (2.4) 
/ 0 ,  v ( ~ } ~  ~,(t),  v ( ~ ) ~  % -  

a,~{,) = t - -  q,, V (x) ~ ~ ,  ( t) ,  
[ o ,  V ( x ) ~ a . ( t ) ,  

a~(~) --  [ - -  q,, Y (x) ~ e ,  (t), V (x) ~ ~ +  

At the sides we have 
m_cv} = %(~,) = %c~) = 0, V (x) E rv  (~ = t ,  2) 

T h e  b o u n d a r y  c o n d i t i o n s  o n  t h e  o u t e r  s u r f a c e s  a r e  

T1 = T, ÷, V (x) ~ ~1 ÷, T, = T,-, V (x) ~ ~ , -  

)~rOTv/Oh + a (T  v - -  T) = 0, V (x) ~ r v 

X,OT,/OA + a ,  ( T ,  - -  T) = 0, V (x) ~ F ,  

and at the edges they are 

(2.5)  

(2.6)  

(2.7) 

where T is the temperature of the surrounding medium, and ~ and ~. are the heat transfer 
coefficients of the plates and the layer. 

The case of other mechanical and thermal boundary conditions is treated in the same 
manner. 

We shall assume that at the boundaries between the heat conducting layer and the plates 
ideal contact heat exchange takes place 

T, = T , ,  --~rOT,/~)h = ~**OT,/Oh, V (x) @ f21- T ,  = T , ,  ~rdT,/Oh = --~.,OT,/Oh, V (x) ~ fl~+ (2.8) 

We shall write the initial conditions at t = 0 in the form 

u,(~) = ],{~), 8u,(v)/Ot = q,(~) (i = t ,  2, 3; 7 = 1 ,2  5 T v = T ¢ ,  T ,  = T ,  ° (2.9) 

and we will impose the following additional constraints on the normal displacements of the 
points of the surfaces Q,- and ~s + : 

us(,) - -  ua(x) < h0 (2 . i0 )  

We will assume that the surfaces ~,- and ~s + are rough. Therefore, when the plates 
come into contact during their deformation and a region ~,(t) forms, we shall have contact 
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with friction. Such a formulation leads to an analogue of the Signorini problem /2/ with 
friction. In the region of dense contact ~(t) the mechanical parameters must satisfy the 
additional conditions (f is the coefficient of friction within the zone of contact) 

V (x) ~ b~e (t), ua(~ - -  ua(~) = h 
Ga3(1) = ~a3(~) --q3 

I (~a(v) I < / I qa I =~ U~(l~ = u=(~) (a, 15, V = 1, 2) 

(2 .11)  

We shall write the thermal conditions within the area of contact in the form 

q = a¢ (T3 - -  T~), V (x) ~_ e ,  (t) ( 2 . t 2 )  

where q is the heat flux passing across the area of contact and ~ is the contact thermal 
conductivity. 

The analysis of the problem formulated here encounters considerable mathematical dif- 
ficulties caused by the dimensions of the problem, as well as by its lack of linerity follow- 
ing from the contact conditions (2.10), (2.11). The problem can be partially simplified by 
making use of the fact that the bodies in question are plates and the gap between them is 
small. Let us expand the thermodynamic parameters describing the state of the system in 
series in Legendre polynomials P~ (0)) along the coordinate xa, and set up the equations of 
the problem in question in terms of the coefficients of this expansion. As a result we 
obtain a system of equations which depend on only two spatial coordinates. 

3.  a e d u o t i o n  o f  t h e  t h v e e - d i m ~ n s i o n a Z  e q u a t i o n s  d e s e r i b i n ~  t h e  t h e v a m d y n a m i e  s t a t e  o f  
t h e  p S a t e e  and  t h e  Z a y e r  t o  t T o o d i m e n s i o ~ s .  L e t  u s  i n t r o d u c e  a C a r t e s i a n  s y s t e m  o f  c o o r d i -  
n a t e s  with the origin at the middle of thesurface of the undeformed, heat conducting layer. 
The z, and x~ axes will lie in the middle surface, and xa will be perpendicular to it. The 
arguments accompanying the Legendre polynomials ~ and 0). should vary from -I to +i, and 
must therefore be connected with x s by the following relations: 

o)1 = (2x3 - -  ho - -  ha)/ha, x3 ~ [ho/2 ,  ha*], ha+ = ho/2 Jr ha ( 3 . t )  

0)a = (2xa -F ho + h~)/ha, xa ~ [h( ,  ho/2] ,  / h -  = --ho/2 - -  ha 

0),  = (2x~ - -  h.)/h,  xa ~ [h-, h+], h + = ho/2 - -  u'3(1) 

h- = --ho/2 -F ua+(~), h = h + --  h-, h .  = h + -4- h- 

- + 

where ua(t) and ua(a) are the normal components of the displacement vectors of the points of 
the plates situated, respectively, on the surfaces ~t- and ~s +. 

Multiplying Eqs. (2.1) by (2k -~ |)~-x/°k (0)v) (k = I, 2 ..... oo) and integrating over x 8 from 

ho/2 to ha+ for plate 1 and from .h s- to --ho/2 , for plate 2 we obtain, after reduction 

k 
~ + ~  o / a ~ ( v )  + a"a(v) ~ 2 k + t  (3.2) 

0u3(y) ) 

Ou3(v) . 2 k - - I  , ~ ~+2 

2k - -  5 ~-2 h ~+2 ] 
hv (u~,,j) + u,~(v) + us(v)  + • • .)  + • • •., + 

- -  to(v) ~) a(v) (a  1, 2) 2k ÷ 1 (/~a,v) 3~ _L 2R dTvh ~ OZu~ 
2.uthv ~ a2" - -  : Oxa 9 Ot~ 

k+l ~+3 ) 2k .-4- t ( OUl(v ) 2_ ~UI(v) /~+1 k+3 Ou2(Y) -I- 0u2'¥) 
A~u3(v) + ~ ~ ---d~=, - ~ + " "" + ~ - ~ + . . . . .  

~_~ ~-,  ~._~ ~_~ (ou,(v) + ou,,,) I (ou~(~) -~ aua~v~ I 
~h¥ ~ " ' " 

+ ( k +  ~ ) ~ ( u 3 ( v ) + u 3 ( ~ ) +  . . ) + ( ~  + z ~ ) T ( u a ( v ) +  3~v)-4- 

ur+~3(v) 2k gu 1 - F . -  .) + . . .  _ ] + 2---~--v q)3(?) - -  (3k + 2 t t ) a 7  (T~, -~ -+ T.~ -~ ÷ 

k 1 k la  0 U3(V) 
- - T o ( v ) - - T o ~ v ) - -  ' ) = P  or' 

~ ( x )  = c53 + -F ( - -  1) ~ q,, - -  ~,(2~ = q, + ( - -  t )  r o~3- 
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k 
where A~ is a two-dimensional Laplace operator, and u,(~) and T~ ~ are the coefficient of 
the expansion of the components of the displacement vectors and the temperture of the plates 
in series in Legendre polynomials. 

The equations of heat conduction transformed in this manner have the form 

t o/'~ (3.3) A2Tv ~ 2k -t- t (Q~_~ ..].. Q~-a .q_ . . ) _.~ ~ = T Ot -4- 
2h. v 

(3~-~-2~t) ~l.ro~y O [ 0Ul(,~) "4 0u~(v) 2k-{- I ,U~+I ~+a 
7, T' /-  L-"~7-n o~, nv t ~(v} + u~{,~) + . . . )  

Here Q'v, Qv +, Qv- and Q.~ are the derivative of the temperature with respect to xa, its 
values on the surfaces ~+ and ~y-, and each term of its expansion in series in Legendre 
polynomials, respectively. 

The functions QT+,' Q~- and Qv ~ are found from the conditions of heat exchange at the 
face surfaces of the plates, and the recurrence relations 

When constructing the two-dimensional equations of heat conduction for the layer, we 
take into account the fact that its thickness changes when the plates are deformed. Let us 
multiply Eq. (2.3) by (ik ~- |) h-*P k (~.) (k = |, 2 .... ) and integrate the resulting expression in 
x 3 from h- to h +. Carrying out the calculations and taking into account the fact that h- 
and h + depend on x~ and t (~ = I, 2), we obtain the equations of heat conduction in the 
form 

~ k 1 (y2T,~,V~h + V,T,2V~h,) + 52T , -~- T , a S , h  + T,~%,h,  + T k (3.5) 

2k 2 + t [T,+A,h+ + (__ t) k T,-A,h-]  -F + (V,hQ, ~ -F V~h,Q~ t) + 

2k .-{- t 2k + I k-3 
2h [ Q * + - ( - t ) ~ Q * - I + T ( Q ~ * - *  + Q ,  + ' ' ' )  + 

X, ~ 1 .~ OT, ~ . t Oh 1 Oh, T h 
T j  = T ( T  + T - g / -  T,~ + T T , , - -  

2h L dt T * + - -  

T, ~, = (k + 1) T ,  ~ + (2k + t)(T~, - '  -5 T* ~-' + . . . ) ,  

T~, = (2k -F t ) (T ,  k~ --  T~-' -4-. . . )  
1 ) ~ a r ,  k 2k+1 F(T ,+ ,  _ . t ah _~ q . ' = ( k +  ax, 2h T, ) +--~-~-x, i** + 

0T, 0T, t 0h Ic-2 t Oh, ,7, k ~ k-I  ~-4 
T ~ ' * ' J - F ( 2 k + i ) ~ + ~ " F ' " + T ~ [ ( k - - t ) T *  -4- 

(3k - s) r~, -' +. . . ]  + ~ ~ [ (2k -  3} r~, -" + (4~ - to) r 2 '  + . . . I  - 

+ 2k÷___z + 
- Tk-3  

Q,, k = (2k + t) [ al'~*-' o , o .kTk-1 + 
( axl +-~n +"'+~ t * 

(3k--3)  T,  k -3+ .  . t Oh, ~-2+(4k__6) k-4 " ' ] T ' ~ z ~  [ ( 2 k - - l ) T ,  T,  + . . . ] - -  

( 2k~___._.~l .4_ 2k2_._.~5 + . . . ) + F ( T , + T , _ ) }  

A.=~ ~ + a~, ~h a~,/' ~ +J~,' 

Q k = (Q~/, Q.5 
Oh+ T + (__ t% ~ Oh- T,-" Q k=(Qn~  Q,~), F ( T ,  + , T , - ) = ~ _ ,  - - ,  _, oz, 

The formulas for Qzl ~ and Q22 ~ are identical with the formulas for QI~ k and Qn k, 

provided that we replace the derivatives in ~ in the latter by derivatives in ~. 
For the functions Q.~ we have recurrence relations analogous to (3.4), and the values 

of T. +, Y~, Q.+ and Q.- are found from the conditions of heat exchange with the plates. 
The thermodynamic parameters in (3.2) and (3.3) depend only on three variables (x,, a~), t. 
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4. Reduction of  the boundary and contact oondit ions to have dimensions. The Eqs. (3.2), 
(3.3) and (3.5) are mutually dependent and their mutual dependence is governed by the structure 
of the equations, as well as by the conditions of heat exchange between the plates and the 
layer and of the contact between the plates. 

Let us bring the initial, boundary and contact conditions into correspondence with the two 
dimensional equations of thermoelasticity and heat conduction of the plates and the layer. 
To do this we shall expand the mechanical and thermal conditions on the ends (2.5), (2.7) and 
initial conditions (2.9) , in series in Legendre polynomials, and write them in terms of the 
coefficients of the expansion. 

We shall assume that the plates move under the action of the external load and the 
temperature field in such a manner that they do not come into contact with each other even at 
a single point, i.e. ~e (t)= 0. The thermal conditions at the outer surfaces of the plates 
(2.6) and the conditions of their heat exchange with the heat conducting layer (2.8) will be 
written in the form (here and henceforth the summation will be carried out from k = 0 to 

2 T l ~ - - T 1  +, V(x,,x~)z-e+, Y.(__I)~T2k=T~ -, V(xz, x 2 ) ~  2- (41) 

E (-- t)~ T1 ~ = ZT, ~, ~.Z (-- tf+l Ql~ = t,ZQ,~, V (x~, x2) ~ f~- 

Z(-- t )~T,~=2~2~,  )~,E(--I)~+~Q,~=~ZQ= ~, V(x~,x2)~f~ + 

The above conditions and recurrence relations (3.4) together yield the functions~7 +, Q~-, 

Q k, T.+, T.-, Q.+, Q,- and Q.~, which appear in (3.3) and (3.5). Thus we have constructed 
a mutually dependent system of quasilinear equations describing the thermoelastic state of 
the plates, and the heat exchange between them occurs through the heat-conducting layer with- 
out any contact between the plates. 

If during the motion the plates should come in contact with each other and a region 
Qe(t) appears, then contact forces of interaction q, will appear between them. The thermo- 
dynamic state of the system within the regions ~/~e will be described by Eqs.(3.2), (3.3) 
and (3.5), and ~, will be described by its own system of equations which is much simpler 
than (3.2), (3.3) and (3.5). This is related to the fact that in this case the heat exchange 
takes place directly between the plates through the areas ~i- and Q2 +, and there is no 
longer any need for Eqs.(3.5). 

The problem consists of solving the system of Eqs.(3.2), (3.3) determining the area of 
contact ~e(t) and the forces of interaction between the plates qz within the area, under 
the constraints (2.11) which we shall transform as follows: 

Y ( z l ,  x , ) ~ e ,  2u~,,>--Z(--t)~u~3m * 7 . ( - -  o -'~ - -  ( 4 . 2 }  = ho  ~ Z033(2)  = t )  I¢ 33(1) - -  - -  q3 
k 

{Xoe~<,>l</lqa {, lY~(-- l '~oh 
2 ( - t)k u~c,> ~ = =2u~(,> (a, ~ t ,2 )  

We note that when the region of close contact ~e exists, the problem in question 
becomes considerably more complicated. This is due to the fact that in the contact-free 
regions (~7/~e) the interdepenent quasilinear system (3.2), (3.3) and (3.5) remains valid, 
while in the region ~, we have the system of Eqs.(3.2), (3.3) with constraints (4.2) and 
unknown ~e and qt. The problem consists of solving each system of equations and matching 
the solutions obtained on 0~e. 

5. Constz, uc t ion  of t~ appt~x~t~s. The system of Eqs. (3.2), (3.3), (3.5) has the 
advantage that the functions appearing in it depend on two spatial coordinates. It contains, 
however, an infinite number of equations. Reduction is used when carrying out the practical 
calculations, and the expansions of thermodynamic parameters in series in Legendre polynomials 
are truncated to contain a finite number of terms. We obtain the n-the approximation 
equations by varying the index k in (3.2)-(3.5), (4.1) and (4.2) from 0 to n. 

Let us consider in greater detail the first-approximation equations. We shall write the 
equations of heat conduction of the plates (3.3) taking into account the conditions (4.1), 
in the form AnT O+2h~FvO+x_~loTv° 3,i + 2.u. ~o O(Oul(,). Ou2(~) 

I u~<~) 
h.¢ 

9 9  F'Vl--  3Qv° XV* t OTv* 
A2T,~ t + 

-'v 

3~+2t ,  +1 o (o,,L,~ o,,I+/ 
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F ,  ° = Tx  + + T~ + - -  2T~°/h, ,  F ,  ° = T¢-  + T , -  - -  2T2°/h2 
F** = T ,  + - -  Tk  + - -  5T,I /(3h~),  F ,  ~ = T~- - T , -  - -  5T ,* / (3h , )  

T~- = [(~2h ~ q- X X , h h , ) ( 2 7 T ~ -  + 54T,  ° q'- 90T,  ~) + ~.,*h,h~ ( 7 2 T ,  ° - -  6 0 T ,  *) + 
X ~ , h h ,  (54T ,  ° - -  9 0 T ,  ~ + i8T~ ° - -  30T** + 9 T / ) ]  [8t~.~.,h (h ,  + h2) + 

72X,2h,h2] -* 

The expression for T~ + is obtained from the last formula by replacing h, by h~, h2 by 
hl, T~- by TI +, T21 by --Y, I, T. I by --Y**. The equations of heat conduction of the 
layer are 

3 1 ; o r ,  o t oh _ o (5.2)  A 2 T , ° + L o ( T , ° , T , I ) + - ~ F ( T k +  + T~-) =-~L-~7- + - - K - - - ~ - T ,  -- 

i r~h÷ v +  oh- T,-]}  
2"-'W L - - o ' / ' - - *  - -  o-7-  

A ~ T * * + L I ( T , O , T , 1 ) _ F 9 ( T  + T()=.~,[~l j O T ,  ~ . . .F_ .~__~I .  Oh - 1 +  

3 oa. 3 ]-Oh+ oh- ]} 
h "~ T ~ ° - - " 5 " K - [ _ ~  T * + ' b - - ' ~ F T * -  

where L 0 and L I are quasilinear differential operators. 
We obtain the system of first-approximation equations for the plates from (3.2). The 

system separates into two independent subsystems. The first subsystem characterizes the 
motion of the plate within its plane, and the second within its plane of flexure. 

We neglect the deformations of the plates within their planes, and in this case their 
1 1 motion can be fully described by the parameters ua(~), u,(~) and ua(~). Models based on some or 

other hypotheses which simplify the system of equations of motion of the plates are often used 
instead of the equations of the first approximation. One of the simplest theories often used 
in solving practical problems is the theory based on the Kirchhoff hypotheses. The motion of 
the plates is described in this theory by the parameters us(~) called the flexures of middle 
surfaces and denoted by ~(~). Two other parameters of the theory of the first approximation 

* =--h~O~(~)/ax~ (~ = I, 2). The equations of motion are connected with it by the relations u~(v ) 
of the plates in this case have the form 

A,A:~o(%,) 3[_ (t  + %') O~TA2T~V ) -~- - -  2phi, 0%,)(~,) 1 
D or' = "-f f(p - -  q) (5.3) 

where p is the normal load applied to the outer surfaces of the plates and q is the normal 
component of the contact pressure. 

Even with these simplifiations the problem remains complicated. In the first place, 
this is caused by the presence of a quasilinear system of equations of heat conduction for 
the layer (5.2). Let us retain, in the expansion of the layer temperature in series in 
Legendre polynomials, a single term. Then the temperature field within the layer will be 
described by the first equation of (5.2). We have 

Tk- : [(9~,2h Jr  ~,~**h,)(3T,- H- 6T2 ° + 10r21) + 

£~ ,h ,  (3T1 + -F 6T1 ° - -  i0T,1)]{9 [ 9 ~ h  -t- ~,;~, (h, + h2)]} -~ 

The paramater T. ° is missing from this expression, and this means that the system of 
Eqs.(5.1), (5.3) is not connected with (5.2), and this simplifies the solution considerably. 

Thus the contact problem in question is reduced, within the framework of the Kirchhoff 
model, to a system of Eqs.(5.1), (5.3) with condition of contact ~s-- ~, = h 0. 

We have obtained here the general equations of the problem of thermoelastic contact 
between plates through a heat-conducting layer based on the equations of coupled thermo- 
elasticity. The equations of non-coupled dynamic, quasistatic or static thermoelastic con- 
tact problems can be obtained from them as special cases. 
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